Метод намотки

 

Намотка - является одним из наиболее распространенных и перспективных методов получения изделий из армированных материалов. Намоткой производят оболочки различного типа и назначения. Это прежде всего цилиндрические тонко- и толстостенные трубы, закрытые профили прямоугольного, треугольного, эллиптического сечения, конические оболочки. Так же получают изделия в виде замкнутых емкостей (баллонов) для хранения газообразных и жидких веществ под повышенным давлением объемом от 1-2 л до сотен кубометров.

Намотка волокном - сравнительно простой процесс, в котором армирующий материал в виде непрерывного ровинга (жгута) или нити (пряжи) наматывается на вращающуюся оправку. Специальные механизмы, которыеПроцесс намотки перемещаются со скоростью, синхронизированной с вращением оправки, контролируют угол намотки и расположение армирующего материала. Его можно обёртывать вокруг оправки в виде прилегающих друг к другу полос или по какому-то повторяющемуся рисунку до полного покрытия поверхности оправки. Последовательные слои наносятся под одним и тем же или под разными углами намотки, пока не будет набрана нужная толщина. Угол намотки может изменяться от очень малого - продольного до большого - окружного, т.е. около 90° относительно оси оправки, включая любые углы спирали в этом интервале. Связующим для армирующего материала служит термореактивная смола. При «мокрой» намотке смола наносится в процессе самой намотки. «Сухая» намотка основана на использовании ровинга, предварительно пропитанного смолой. Обычно отверждение идет при повышенной температуре без избыточного давления, и завершающей стадией процесса является снятие изделия с оправки. При необходимости проводятся отделочные операции: механическая обработка или шлифование.

Основной процесс имеет множество вариантов, различающихся в широких пределах характером намотки, особенностями конструкции, комбинацией материалов и типом оборудования. Конструкции должны быть намотаны в виде поверхностей вращения, хотя, в определенных пределах, могут быть отформованы изделия и другой конфигурации сжатием еще неотвержденной намотанной детали внутри закрытой формы. Конструкции могут быть получены в виде гладких цилиндров, труб или тюбингов диаметром от нескольких сантиметров до нескольких десятков сантиметров. Намоткой можно формовать также изделия сферической, конической и геодезической формы. Для получения сосудов высокого давления и резервуаров для хранения в намотку вводят торцовые заглушки. Можно формовать изделия, работающие в специфических условиях нагружения, таких как внутреннее или наружное давление, сжимающие или крутящие нагрузки. Намотка дает возможность укреплять термопластичные трубы и металлические сосуды высокого давления наружными бандажами. Изделия могут быть спроектированы и сделаны с высокой степенью точности. С другой стороны, для намотки характерны меньшие скорости производства.

Для намотки пригоден практически любой непрерывный армирующий материал. На практике для этих целей используется, главным образом, стекловолокно. Углеродное и арамидное (Кевлар) волокна используются для наиболее ответственных деталей в аэрокосмической промышленности, где требуются, в первую очередь, высокие значения удельной прочности и модуля упругости.

Основными материалами для матрицы служат эпоксидные и полиэфирные смолы и полимеры сложных виниловых эфиров. Полиимиды, фенопласты и кремнийорганические смолы, при отверждении которых образуются продукты конденсации, труднее перерабатываются.

Для намотки применяются машины различных типов: от разновидностей токарных станков и машин с цепным приводом до более сложных компьютеризованных агрегатов с тремя или четырьмя осями движения. Имеются также машины для непрерывного производства труб. Спроектировано портативное оборудование для намотки больших резервуаров на месте установки. С помощью этих машин производится обычно только намотка по окружности, а для усиления конструкции в продольном направлении применяют рубленую пряжу или ленты.


Методы и схемы намотки


Наибольшее распространение получили два основных вида намотки: полюсная и спиральная, каждая из которых дает свою характерную схему расположения волокна. При полюсной (называемой также плоскостной) намотке оправка остается неподвижной, в то время как подающее волокно устройство рычажного типа вращается относительно продольной оси под заданным углом наклона. После каждого его оборота оправка перемещается вперёд на расстояние, соответствующее одной ширине полосы волокон. Такая схема называется однослойной полюсной намоткой (рис. 1). Полосы волокна укладываются впритык одна за другой; готовый слой состоит из двух сложений, направленных в противоположные стороны относительно угла намотки.

Траектория при однослойной полюсной намотке
Рис. 1. Траектория при однослойной полюсной намотке.


При спиральной намотке оправка непрерывно вращается, в то время как каретка, подающая волокно, перемещается возвратно-поступательно. Скорость перемещения каретки и частота вращения оправки подбираются такими, чтобы обеспечить заданный угол намотки. При этом обычно спиральная намотка получается многовитковой. После первого прохода намотки полосы волокна не примыкают друг к другу. Для получения повторяющегося рисунка требуется несколько витков. Типичная десятивитковая модель показана на рис. 2. Путь волокна за один виток в этом случае составляет одну десятую суммы длины окружности и ширины полосы; волокно одиннадцатого витка затем ложится рядом с первым. И в этом случае каждый слой состоит из двух сложений. Такая конфигурация обязательно приводит к пересечению волокон (образованию поперечных полос) в отдельных участках. Число мест с поперечными полосами зависит от угла намотки. Необходимый рисунок намотки подбирается регулированием машины методом проб и ошибок или рассчитывается по геометрии изделия.

Десятивитковой спиральной намотки
Рис. 2. Рисунок десятивитковой спиральной намотки: А, Б - полюсные отверстия; В, Г - своды.

Находят применение и другие методы намотки.

Окружная намотка. Окружные или круговые слои наматывают под углом, близким к 90°, причем за один оборот подающее устройство продвигается на ширину полосы. Считается, что слой состоит из одного сложения. Окружные слои можно наносить для дополнительного усиления или увеличения жесткости отдельных, наиболее важных  мест  цилиндра.

Продольная намотка. Этот термин относится к намотке под малыми углами, которая может быть плоскостной или спиральной. При получении закрытых сосудов высокого давления минимальный угол определяется величиной полюсных отверстий с обоих концов.

Комбинированная намотка. Продольные слои усиливают окружными. При формовании сосудов высокого давления окружные слои обычно наносят снаружи. Равновесие между армирующими материалами в окружном и продольном направлениях достигается спиральной  намоткой двух  или нескольких слоев.

Прочие методы. Плоскостная многовитковая намотка аналогично многовитковой спиральной намотке, а одновитковая спиральная намотка аналогична плоскостной намотке. Оба рисунка отличаются друг от друга только движением волокна при формовании торцовых  крышек.